skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paul, Harrison R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Membrane filtration is an important industrial purification process used to access clean and potable water. The fabrication of the membranes used in these purification applications often involves expensive and energy-intensive processes that have a large negative impact on the environment. Sustainable alternatives with a high water flux and strong rejection performance are needed to purify water. The focus of this work is to investigate the use of polymer-grafted cellulose nanocrystals (CNCs) in membrane applications. The impact of the polymer grafting density and polymer conformation was investigated and it is shown that by increasing the grafting density of PEG such that it adopts a semidilute polymer brush conformation, the water flux through the membranes could be increased from 3.5 to 2900 L h–1 m–2 for CNC membranes without and with grafted PEG, respectively. These membranes also exhibited rejection performances with molecular weight cutoffs between 62 and 100 kDa for all polymer-grafted samples, consistent with the ultrafiltration regime. Thus, the design of these one-component composite materials can enhance the water permeability of ultrafiltration membranes while maintaining effective selectivity. 
    more » « less